
3.3 Homogeneous Equations with Constant Coefficients  

Review: Recall in Section 3.1, we talked about 
 of the following form

To solve for , we first solve for  from the characteristic equation 

which has roots .

Case 1. ,  are real and  ( ):

         General solution: 

Case 2. ,  are real and  ( ):

         General solution: 

Case 3. ,  are complex numbers ( ): (Not covered in Section 3.1 and 3.2)

We can write .

         General solution: 

 

In this lecture, we will discuss how to solve the general  
of the form

Similar to 2nd-order homogeneous equations, we look at the corresponding characteristic equation: 

We have 3 cases of the roots for Eq .

1. Distinct real roots

2. Repected real roots

3. Complex roots

distinct
repeated

 

 



 

Case 1. Distinct Real Roots

If the roots  of  are real and distinct, then

 

Example 1 Find the general solution to the given differential equation. 
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Case 2. Repeated Real Roots

If Eq  has repeated root  with multiplicty , then the part of a general solution of  corresponds 
to  is

 

Example 2 Find a general solution the differential equation.
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Euler's Formula for Complex Numbers

Euler's formula: 

 

, where  is any complex number.

 

Case 3. Complex Roots

Unrepeated complex roots: If  are roots of the characteristic equation, then the 
corresponding part to the general solution 

               

Remark: We have the above formula since

 

Example 3   Find the general solutions of the differential equation.
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Repeated complex roots

If the conjugate pair  has multiplicity  then the corresponding part of the general solution has the 
form

 

 

Example 4 In the following question, one solution of the differential equation is given. Find the general 
solution.
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Exercise 5 Find general solutions of the equations in the following question. First find a small integral root of 
the characteristic equation by inspection; then factor by division.
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Euler equations

According to our handwritten HW#5 Problem 51 in Section 3.1, the substitution   transforms 
the second-order Euler equation  to a constant-coefficient homogeneous linear 
equation. Similarly, the same substitution transforms the third-order Euler equation

(where  are constants) into the constant-coefficient equation

Example 6 Use substitution  from above to find general solutions (for ) of the following Euler 
equation.
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