3.3 Homogeneous Equations with Constant Coefficients

Review: Recall in Section 3.1, we talked about
2nd-order homogeneous equations with constant coefficients of the following form

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

To solve for y, we first solve for r from the characteristic equation

$$
a r^{2}+b r+c=0
$$

which has roots $r_{1}, r_{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
Case 1. r_{1}, r_{2} are real and $r_{1} \neq r_{2}\left(b^{2}-4 a c>0\right)$:
General solution: $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
Case 2. r_{1}, r_{2} are real and $r_{1}=r_{2}\left(b^{2}-4 a c=0\right)$:
General solution: $y=\left(c_{1}+c_{2} x\right) e^{r_{1} x}$
Case 3. r_{1}, r_{2} are complex numbers ($b^{2}-4 a c<0$): (Not covered in Section 3.1 and 3.2)
We can write $r_{1,2}=A \pm B i$.

$$
\text { General solution: } y=e^{A x}\left(c_{1} \cos B x+c_{2} \sin B x\right)
$$

In this lecture, we will discuss how to solve the general homogeneous equations with constant coefficients of the form

$$
\begin{equation*}
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=0 \tag{1}
\end{equation*}
$$

Similar to 2nd-order homogeneous equations, we look at the corresponding characteristic equation:

$$
\begin{equation*}
a_{n} r^{n}+a_{n-1} r^{n-1}+\cdots+a_{2} r^{2}+a_{1} r+a_{0}=0 \tag{2}
\end{equation*}
$$

We have 3 cases of the roots for Eq (2).

1. Distinct real roots
2. Repected real roots
3. Complex roots

- distinct
- repeated

Case 1. Distinct Real Roots
If the roots $r_{1}, r_{2}, \cdots, r_{n}$ of $E q(2)$ are real and distinct, then

$$
y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}+\cdots+c_{n} e^{r_{n} x}
$$

Example 1 Find the general solution to the given differential equation.

$$
y^{(3)}-7 y^{\prime \prime}+12 y^{\prime}=0
$$

ANS: The corresponcling char. eqn is

$$
\begin{aligned}
& r^{3}-7 r^{2}+12 r=0 \\
\Rightarrow & r\left(r^{2}-7 r+12\right)=0 \\
\Rightarrow & r(r-3)(r-4)=0 \\
\Rightarrow & r_{1}=0, \quad r_{2}=3, \quad r_{3}=4
\end{aligned}
$$

So the general solution is

$$
\begin{aligned}
& y(x)=c_{1} e^{0 \cdot x}+c_{2} e^{3 \cdot x}+c_{3} e^{4 \cdot x} \\
\Rightarrow & y(x)=c_{1}+c_{2} e^{3 x}+c_{3} e^{4 x}
\end{aligned}
$$

If Eq (2) has repeated root r with multiplicty k, then the part of a general solution of $E q(1)$ corresponds to r is

$$
\left(c_{1}+c_{2} x+c_{3} x^{2}+\cdots+c_{k} x^{k-1}\right) e^{r x}
$$

Example 2 Find a general solution the differential equation.

$$
y^{(4)}+3 y^{(3)}+3 y^{\prime \prime}+y^{\prime}=0
$$

ANS: The corresponding char. eqn is

$$
\begin{aligned}
& r^{4}+3 r^{3}+3 r^{2}+r=0 \\
\Rightarrow & r\left(r^{3}+3 r^{2}+3 r+1\right)=0
\end{aligned}
$$

Notice that $r=-1$ is a solution since

$$
\begin{aligned}
& (-1)^{3}+3+3(-1)+1=0 \\
\Rightarrow & r(r-(-1))\left(r^{2}+2 r+1\right)=0 \\
\Rightarrow & r(r+1)(r+1)^{2}=0 \\
\Rightarrow & r(r+1)^{3}=0 \\
\Rightarrow & r_{1}=0, \quad r_{2}=r_{3}=r_{4}=-1 \quad \text { (Repeated real roo ts) }
\end{aligned}
$$

Thus the general solution is

$$
\begin{aligned}
& y(x)=c_{1} e^{0 \cdot x^{1}}+\left(c_{2}+c_{3} x+c_{4} x^{2}\right) e^{-1 \cdot x} \\
\Rightarrow & y(x)=c_{1}+\left(c_{2}+C_{3} x+c_{4} x^{2}\right) \cdot e^{-x}
\end{aligned}
$$

Long division of polynomides

$$
r+1 \begin{array}{r}
\frac{r^{2}+2 r+1}{r^{3}+3 r^{2}+3 r+1} \\
\frac{r^{3}+r^{2}}{2 r^{2}+3 r+1} \\
\frac{2 r^{2}+2 r}{r+1} \\
r+1
\end{array}
$$

Euler's Formula for Complex Numbers

$$
i=\sqrt{-1}
$$

- Euler's formula: $e^{i \theta}=\cos \theta+i \sin \theta$

- $e^{z}=e^{x+i y}=e^{x} e^{i y}=e^{x}(\cos y+i \sin y)$, where $z=x+i y$ is any complex number.

Case 3. Complex Roots

Unrepeated complex roots: If $r_{1,2}=A \pm B i$ are roots of the characteristic equation, then the corresponding part to the general solution

$$
y=e^{A x}\left(c_{1} \cos B x+c_{2} \sin B x\right)
$$

Remark: We have the above formula since

$$
\begin{aligned}
& y(x)=C_{1} e^{r_{1} x}+C_{2} e^{r_{2} x} \\
& =C_{1} e^{(A+B i) x}+C_{2} e^{(A-B i) x}=C_{1} e^{A x} e^{B i x}+C_{2} e^{A x} e^{-B i x} \\
& =C_{1} e^{A x} \cdot(\cos B x+i \sin B x)+C_{2} e^{A x}(\cos B x-i \sin B x) \\
& =e^{A x}\left[\left(C_{1}+C_{2}\right) \cos B x+i\left(C_{1}-C_{2}\right) \sin B x\right] \\
& =e^{A x}\left(c_{1} \cos B x+c_{2} \sin B x\right)
\end{aligned}
$$

Example 3 Find the general solutions of the differential equation.

$$
3 y^{(4)}+7 y^{\prime \prime}+4 y=0
$$

ANS: The corresponding char. eqn is

$$
\begin{aligned}
& 3 r^{4}+7 r^{2}+4=0 \\
\Rightarrow & 3 x^{2}+7 x+4=0 \quad\left(\text { Let } x=r^{2}\right) \\
\Rightarrow & x=\frac{-7 \pm \sqrt{7^{2}-4 \times 3 \times 4}}{6}=\frac{-7 \pm 1}{6}
\end{aligned}
$$

$$
\Rightarrow x=r^{2}=-1 \text { or } x=r^{2}=-\frac{4}{3}
$$

So

$$
\begin{aligned}
& r_{1,2}= \pm \sqrt{-1}= \pm i \Rightarrow\left\{\begin{array}{l}
A=0 \\
B=1 \\
(=A \pm B i)
\end{array}\right. \\
& r_{3,4}= \pm \sqrt{-\frac{4}{3}}= \pm \sqrt{\frac{4}{3} \times(-1)}= \pm \frac{2}{\sqrt{3}} i \Rightarrow\left\{\begin{array}{l}
A=0 \\
B=\frac{2}{\sqrt{3}}
\end{array}\right.
\end{aligned}
$$

(complex roots)
So

$$
\begin{aligned}
& y(x)=e^{0 \cdot x^{1}}\left(c_{1} \cos x+c_{2} \sin x\right)+e^{0 \cdot 1}\left(c_{3} \cos \frac{2}{\sqrt{3}} x+c_{4} \sin \frac{2}{\sqrt{3}} x\right) \\
& \Rightarrow y(x)=c_{1} \cos x+c_{2} \sin x+c_{3} \cos \frac{2}{\sqrt{3}} x+c_{4} \sin \frac{2}{\sqrt{3}} x
\end{aligned}
$$

Repeated complex roots
If the conjugate pair $a \pm b i$ has multiplicity k, then the corresponding part of the general solution has the form

$$
\begin{gathered}
\left(A_{1}+A_{2} x+\cdots+A_{k} x^{k-1}\right) e^{(a+b i) x}+\left(B_{1}+B_{2} x+\cdots+B_{k} x^{k-1}\right) e^{(a-b i) x} \\
=\sum_{p=0}^{k-1} x^{p} e^{a x}\left(c_{p} \cos b x+d_{p} \sin b x\right)
\end{gathered}
$$

Example 4 In the following question, one solution of the differential equation is given. Find the general solution.

$$
3 y^{(3)}-2 y^{\prime \prime}+12 y^{\prime}-8 y=0 ; y=e^{2 x / 3}=e^{r x}
$$

ANs: The dar. egn is

$$
3 r^{3}-2 r^{2}+12 r-8=0 \ldots
$$

Since $y(x)=e^{\frac{2}{3} x}$ is a solution, of eq n,

$$
r-\frac{2}{3} \frac{3 r^{2}+12}{\sqrt{3 r^{3}-2 r^{2}+12 r-8}} \begin{aligned}
& 3 r^{3}-2 r^{2}
\end{aligned}
$$

$$
r=\frac{2}{3} \text { is a root of }
$$

So $\left(r-\frac{2}{3}\right)$ is a factor of the LHS of
$\otimes \Rightarrow\left(r-\frac{2}{3}\right)\left(3 r^{2}+12\right)=0$

$$
\Rightarrow r_{1}=\frac{2}{3}, \quad r_{2,3}= \pm \sqrt{-4}= \pm 2 i \Rightarrow\left\{\begin{array}{l}
A=0 \\
B=2
\end{array}\right.
$$

$$
y(x)=c_{1} e^{\frac{2}{3} x}+e^{0 \cdot x^{1}}\left(c_{2} \cos 2 x+c_{3} \sin 2 x\right)
$$

$$
\Rightarrow y(x)=c_{1} e^{\frac{2}{3} x}+c_{2} \cos 2 x+c_{3} \sin 2 x
$$

Exercise 5 Find general solutions of the equations in the following question. First find a small integral root of the characteristic equation by inspection; then factor by division.

$$
y^{(3)}+y^{\prime \prime}-2 y=0
$$

Long division of poly
ANs: The corresponding char. egn. is

$$
r^{3}+r^{2}-2=0
$$

Notice that $r=1$ is a solution.
We can factor $r-1$ from $r^{3}+r^{2}-2$ \qquad

$$
\text { So } \otimes \Rightarrow(r-1)\left(r^{2}+2 r+2\right)=0
$$

Thus

$$
r_{1}=1, \quad r_{2,3}=\frac{-2 \pm \sqrt{4-8}}{2}=\frac{-2 \pm \sqrt{-4}}{2}=\frac{-2 \pm 2 \sqrt{-1}}{2}=-1 \pm i \Rightarrow\left\{\begin{array}{l}
A=-1 \\
B=1
\end{array}\right.
$$

Thus the general solution is

$$
y(x)=c_{1} e^{x}+e^{-x}\left(c_{2} \cos x+c_{3} \sin x\right)
$$

Euler equations
According to our handwritten HW\#5 Problem 51 in Section 3.1, the substitution $v=\ln x(x>0)$ transforms the second-order Euler equation $a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=0$ to a constant-coefficient homogeneous linear equation. Similarly, the same substitution transforms the third-order Euler equation

$$
a x^{3} y^{\prime \prime \prime}+b x^{2} y^{\prime \prime}+c x y^{\prime}+d y=0
$$

(where a, b, c, d are constants) into the constant-coefficient equation

$$
a \frac{d^{3} y}{d v^{3}}+(b-3 a) \frac{d^{2} y}{d v^{2}}+(c-b+2 a) \frac{d y}{d v}+d y=0
$$

Example 6 Use substitution $v=\ln x$ from above to find general solutions (for $x>0$) of the following Euler equation.

$$
\begin{array}{r}
a=1, \quad b=-3, \quad c=1, \quad d=0 \\
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+x y^{\prime}=0
\end{array}
$$

Ans: Let $v=\ln x$, by the above discussion, we can write as

$$
\begin{aligned}
& a \frac{d^{3} y}{d v^{3}}+(b-3 a) \frac{d^{2} y}{d v^{2}}+(c-b+2 a) \frac{d y}{d v}+d y=0 \\
\Rightarrow & \frac{d^{3} y}{d v^{3}}+(-3-3) \frac{d^{2} y}{d v^{2}}+(1+3+2) \frac{d y}{d v}=0 \\
\Rightarrow & \frac{d^{3} y}{d v^{3}}-6 \frac{d^{2} y}{d v^{2}}+6 \frac{d y}{d v}=0
\end{aligned}
$$

The char. eqn. of the above eqn is

$$
\begin{aligned}
& r^{3}-6 r^{2}+6 r=0 \\
\Rightarrow & r\left(r^{2}-6 r+6\right)=0 \\
\Rightarrow & r_{1}=0, r_{2,3}=\frac{6 \pm \sqrt{6^{2}-6 \times 4}}{2}=\frac{6 \pm \sqrt{12}}{2}=3 \pm \sqrt{3}
\end{aligned}
$$

(distinct real)

$$
\begin{aligned}
& y(v)=c_{1} e^{0, v}+c_{2} e^{(3+\sqrt{3}) v}+c_{3} e^{(3-\sqrt{3}) v} \\
\Rightarrow & y(x)=c_{1}+c_{2} e^{(\ln)(x+\sqrt{3})}+c_{3} e^{(\ln x)(3-\sqrt{3})} \\
\Rightarrow & y(x)=c_{1}+c_{2} x^{3+\sqrt{3}}+c_{3} x^{3-\sqrt{3}}
\end{aligned}
$$

